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Abstract

The correlations in classical multi-component ionic mixtures with a spatial
dimension d � 2 are studied by using a restricted grand-canonical ensemble
and the associated hierarchy equations for the correlation functions. Sum rules
for the first few moments of the two-particle correlation function are derived
and their dependence on d is established. By varying d continuously near d = 2
it is shown how the sum rules for the two-dimensional mixture are related to
those for mixtures at higher d.

PACS numbers: 05.20.Jj, 52.25.Kn, 05.40.−a

1. Introduction

The statistical equilibrium properties of classical many-particle systems with long-range forces
have been the subject of an extensive literature (for reviews see [1]–[4]). The simplest models
with long-range interactions are Coulomb systems consisting of point particles with charges
of the same sign that move in an inert uniform background of opposite sign. For these systems
no collapse of particles can occur and stability is guaranteed at all densities and temperatures.
Both the one-component plasma, also known as jellium, and ionic mixtures of particles with
different charges and masses fall in this class. An important tool in the analysis of the
equilibrium behaviour of these systems is furnished by the set of correlation functions and the
associated Ursell functions. The first few moments of the latter satisfy sum rules, which are
essential for the description of the large-scale fluctuations of local densities.

In studying one-component plasmas and ionic mixtures it has been found that the
dimension d of space in which these systems are embedded plays a remarkable role. It
turns out that several properties of systems with d = 2 and d = 3 (which have mainly been
considered) are quite similar, whereas occasionally the derivation of these properties proceeds
along rather different lines. An example is a recent proof of a second-moment sum rule for
correlations near a guest charge in a two-dimensional one-component plasma [5]. Here the use
of symmetry properties of the Ursell functions leads to a short proof [6], whereas in deriving
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the analogous sum rule for the three-dimensional case a detailed analysis of the statistical
ensemble properties has to be carried out [7]. Sometimes the analogy between the two- and
three-dimensional cases gets lost altogether, as seems to be the case for a higher-order sum rule
of the two-dimensional one-component plasma [8]. For this sixth-moment rule no counterpart
at d = 3 has been found as yet.

The purpose of the present paper is to postpone any choice of dimension and to derive
sum rules that are valid for ionic mixtures in all dimensions d � 2. We shall refrain from a
discussion of the case d = 1, as periodic oscillations in the density lead to complications in
that case [2]. We shall concentrate on sum rules for two-particle Ursell functions. Our unified
treatment enables one to clearly see how the simplifications in the derivation of these sum
rules for d = 2 come about, and why the proof for d > 2 (and hence for d = 3 in particular)
is necessarily more complicated. In the course of our analysis we shall obtain several new
results for a general Coulomb-type system with d > 3, which has hardly been discussed in the
past [9]–[13]. In deriving our results we shall treat d as a continuous variable, as is standard
practice in the theory of phase transitions [14] and in dimensional regularization of quantum
field theory [15]. This method has been used in the context of systems with long-range forces
as well [16].

When describing multi-component ionic mixtures attention has to be paid to a suitable
choice of the equilibrium ensemble. As in a previous treatment [7], we shall use a restricted
grand-canonical ensemble, in which the fluctuating particle numbers are constrained by
stipulating that the ensuing total charge matches the fixed charge of the inert background.

2. Ionic mixtures in dimension d � 2

We consider a d-dimensional multi-component ionic mixture of s components, with label
σ = 1, . . . , s, in a large volume V . The Nσ particles of species σ carry mass mσ and
positive charge eσ . The system is neutral owing to a uniform background with charge density
−qv ≡ −∑

σ eσ Nσ/V .
For arbitrary d the potential φ depending on the distance r = |r| is proportional to 1/rd−2.

It is the solution of the d-dimensional inhomogeneous Laplace equation �φ(r) = −δ(r), with
� the d-dimensional Laplace operator and δ(r) the Dirac delta function in d dimensions. Here,
it should be noted that in a space with dimension d the Laplace operator acting on an isotropic
function is given by r−d+1(∂/∂r)rd−1(∂/∂r). The explicit form of φ(r) is

φ(r) = �(d/2 − 1)

4πd/2

1

rd−2
+ cd, (2.1)

with �(z) the gamma function and with cd an arbitrary additive constant. We used the fact that
the surface of a unit sphere in d dimensions equals 2πd/2/�(d/2). For d = 3 the potential has
the form φ(r) = 1/(4πr) (at least for cd = 0), which corresponds to the choice of so-called
rationalized Lorentz–Heaviside units in electrodynamics. For d = 2 the potential φ that solves
the two-dimensional Laplace equation is logarithmic,

φ(r) = − 1

2π
log(r) + c, (2.2)

with a constant c that can be used to render the argument of the logarithm dimensionless by
writing c = log(L)/(2π) with an arbitrary length L. This potential can be obtained from (2.1)
by taking the limit d → 2, if cd is chosen as

cd = −�(d/2 − 1)

4πd/2
+ c. (2.3)

2
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Indeed, in the limit d → 2 one finds

lim
d→2

φ(r) = lim
d→2

�(d/2 − 1)

4πd/2

(
1

rd−2
− 1

)
+ c = − 1

2π
log(r) + c. (2.4)

It should be noted that the shift in energy cd as given by (2.3) becomes infinite, when d tends
to 2. This does not come as a surprise since the potential (2.2) grows without bound for large
r, whereas the potential (2.1) for d > 2 tends to cd at large r. If desired, one may choose cd to
be given by (2.3) for all d. However, we shall see that for d > 2 many formulae simplify by
choosing cd = 0, so that the choice (2.3) is somewhat artificial in that case. For that reason
we shall postpone a specific choice of cd and leave it arbitrary as yet.

The Hamiltonian of the ionic mixture is the sum of the kinetic energy T and the potential
energy U,

H = T + U =
∑
σα

p2
σα

2mσ

+
1

2

∑
σ1α1,σ2α2

′
eσ1eσ2φ

(∣∣rσ1α1 − rσ2α2

∣∣)

− qv

∑
σα

eσ

∫ V

dr φ(|rσα − r|) +
1

2
q2

v

∫ V

dr dr′ φ(|r − r′|). (2.5)

The particle α of species σ has position rσα and momentum pσα . The prime at the summation
sign indicates the condition σ1α1 �= σ2α2, so that self-interactions among the point particles
are excluded. As said above, the constant cd in the potential is left arbitrary for the time
being. The integrals representing the interactions involving the background are taken over the
d-dimensional volume V .

As was shown by Lieb and Narnhofer [17] for the one-component plasma in dimension
d = 3, the potential energy U in H is bounded from below, so that the stability of the system
is warranted in that case. Generalizing their argument so as to be applicable to a mixture in
arbitrary dimension one may prove stability for any d � 2, as is shown in appendix A.

3. Electrostatic sum rules

The k-particle equilibrium correlation functions g(k)
σ1···σk

satisfy the BGY hierarchy equations
[2]

∂

∂r1
g(k)

σ1···σk
(r1, . . . , rk) = −βeσ1g

(k)
σ1...σk

(r1, . . . , rk)

k∑
j=2

eσj

∂

∂r1
φ(|r1 − rj |)

−βeσ1

∑
σk+1

nσk+1eσk+1

∫ V

drk+1
[
g(k+1)

σ1···σk+1
(r1, . . . , rk+1) − g(k)

σ1···σk
(r1, . . . , rk)

]

× ∂

∂r1
φ(|r1 − rk+1|), (3.1)

with β = (kBT )−1 the inverse temperature and nσ = 〈Nσ 〉/V the average particle density
of species σ . The correlation functions can be expanded in terms of Ursell functions h(k)

σ1···σk

[18, 19]. In particular, the two-particle Ursell function h(2)
σ1σ2

is defined as g(2)
σ1σ2

− 1. For
large V the Ursell functions are translationally invariant, so that they depend on the difference
between the positions only. In the following we shall assume that the Ursell functions satisfy
the standard exponential clustering hypothesis, which implies that they tend to zero faster than
any power if the separation between two positions goes to infinity.
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For k = 2, the hierarchy equation reads in terms of the Ursell functions

βeσ1

∑
σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)

∂φ(r13)

∂r1
= −∂h(2)

σ1σ2
(r1, r2)

∂r1

−βeσ1

∂

∂r1

∑
σ3

nσ3eσ3

∫
dr3 h(2)

σ2σ3
(r2, r3)φ(r13)

−βeσ1eσ2h
(2)
σ1σ2

(r1, r2)
∂φ(r12)

∂r1
− βeσ1eσ2

∂φ(r12)

∂r1
(3.2)

with rij = ri − rj .
The second term at the right-hand side can be rewritten by expanding the potential in

terms of Gegenbauer polynomials. For r > r ′ one has [20]

φ(|r − r′|) = φ(r) +
�(d/2 − 1)

4πd/2rd−2

∞∑
�=1

C
(d−2)/2
� (cos θ)

(
r ′

r

)�

(3.3)

with d > 2. Here θ is the angle between r and r′. For r < r ′ a similar expansion holds, with
r and r′ interchanged. By expanding the potential in this way and using the orthogonality
relation of the Gegenbauer polynomials one may establish the identity

∂

∂r1

∫
dr3 h(2)

σ2σ3
(r2, r3)φ(r13) = ∂φ(r12)

∂r1

∫
r23<r12

dr3 h(2)
σ2σ3

(r2, r3). (3.4)

Employing this equality in (3.2) and making use of the exponential clustering properties of the
Ursell functions one proves the perfect-screening condition [9–11, 21, 22] for the two-particle
Ursell function of a general d-dimensional ionic mixture,∑

σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) = −eσ1 . (3.5)

Similarly, by using the Gegenbauer expansion and the exponential clustering property
one derives from the hierarchy equations for k = 3 the perfect-screening rules,∑

σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3) = −(

eσ1 + eσ2

)
h(2)

σ1σ2
(r1, r2) (3.6)

∑
σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r

�
13C

(d−2)/2
� (cos θ)

= − (d − 2)�

�!
eσ2r

�
12h

(2)
σ1σ2

(r1, r2) (� = 1, 2, . . .), (3.7)

with θ the angle between r12 and r13, and with (x)n = x(x +1) · · · (x +n−1) the Pochhammer
symbol.

For d = 3 the Gegenbauer polynomials in (3.7) reduce to Legendre polynomials, so
that we recover one of the well-known perfect-screening rules for a three-dimensional ionic
mixture [7, 11, 23]. To derive the analogous identity for d = 2 we use for � � 1 [20],

lim
λ→0

1

λ
Cλ

� (x) = 2

�
T�(x) (3.8)

with T�(x) the Chebyshev polynomials of the first kind. With the help of this relation one
finds from (3.3) in the limit d → 2 the standard expansion of the logarithmic potential [20].
The perfect-screening rule (3.7) becomes upon taking the limit d → 2,∑

σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r

�
13T�(cos θ)= −eσ2r

�
12h

(2)
σ1σ2

(r1, r2) (� = 1, 2, . . .),

(3.9)

which for the one-component case corroborates a previous result [24].
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From the above results a consistency relation can be obtained. On the one hand, we can
prove from (3.2) with (3.4) and (3.5), upon multiplying by r12 and integrating over r2,

βeσ1

∑
σ3

nσ3eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r12 · ∂φ(r13)

∂r1

= −1

2
βeσ1

∑
σ3

nσ3eσ3

∫
dr3 h(2)

σ2σ3
(r2, r3)r

2
23

+ (d − 2)βeσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)φ(r12)

+
[
d − (d − 2)cdβeσ1eσ2

] ∫
dr2 h(2)

σ1σ2
(r1, r2). (3.10)

On the other hand, from (3.7) for � = 1 one gets after multiplication by r−d
12 and integration

over r2,∑
σ3

nσ3eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r13 · ∂φ(r12)

∂r1

= (d − 2)eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)φ(r12) − (d − 2)cdeσ2

∫
dr2 h(2)

σ1σ2
(r1, r2).

(3.11)

Comparison of (3.10) and (3.11) yields an identity, which by means of (3.5) gets the simple
form ∑

σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12 = −2d

β
. (3.12)

For d = 3 this identity reduces to the well-known sum rule that was first obtained by Stillinger
and Lovett [25] and discussed subsequently extensively [7, 19, 21, 26–28]. For the one-
component case with d > 3 its form has been found before [13].

The sum rule (3.12) is independent of cd , as it should be, since the correlation functions
cannot depend on the choice of an additive constant in the potential. For d > 2 the intermediate
steps in deriving (3.12) simplify for the choice cd = 0, but that is not essential for the proof.
To treat the limit d → 2 one has to choose the specific value (2.3) for cd , so that φ(r) stays
finite. With that particular choice the proof of (3.12) remains valid in the limit d → 2. The
form of (3.12) for d → 2 is consistent with that found previously by taking d = 2 from
the start [24, 28]. The above derivation shows how the general form of the Stillinger–Lovett
relation for an ionic mixture reads for arbitrary d � 2.

4. Equilibrium ensemble and thermodynamics

To prepare the ground for the derivation of additional sum rules for the pair correlation
functions of the ionic mixture we need to specify the equilibrium ensemble for the system.
A convenient choice, which has been discussed before [7], is the restricted grand-canonical
ensemble. It is a grand-canonical ensemble with particle numbers satisfying the constraint∑

σ eσNσ = qvV . Its partition function Z depends on the volume V , the inverse temperature
β, the background charge density qv and s − 1 chemical potentials μ̃σ (σ �= 1). In the limit of
an infinite system, the partition function leads to a thermodynamic function p̃ that is defined
by writing

lim
V →∞

1

V
log Z(β, {βμ̃σ }, qv, V ) = βp̃(β, {βμ̃σ }, qv). (4.1)

5
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The energy density uv and the particle densities nσ for σ �= 1 follow by taking derivatives

uv = −∂βp̃

∂β
, nσ = ∂βp̃

∂βμ̃σ

(σ = 2, . . . , s). (4.2)

In writing a partial derivative with respect to one of the variables β, {βμ̃σ }, qv , the other
variables that are meant to remain constant are suppressed. The pressure follows from p̃

through the relation

p = p̃ − qv

∂p̃

∂qv

(4.3)

as is proved in appendix A.
For d > 2 a scaling argument can be used to relate the partial derivatives of p̃. In fact,

the potential energy satisfies the identity

U(rN1 , . . . , rNs , V ) = λd−2U(λrN1 , . . . , λrNs , λdV ) +
1

2

(
λd−2 − 1

)
cd

∑
σ

Nσ e2
σ (4.4)

for arbitrary positive λ. This property implies a specific scaling behaviour of the partition
function Z and the thermodynamic function p̃. As a consequence, the pressure and the energy
density of the ionic mixture are related as

p = d − 2

d
uv − 1

2
(d − 4)

n

β
+

d − 2

2d
cd

∑
σ

nσ e2
σ (4.5)

with n = ∑
σ nσ the total particle density.

The partition function Z, and hence p̃, depends on the additive constant cd via the
Hamiltonian. However, the combination (4.3), which gives the pressure p, is invariant when
cd is modified. On the other hand, the energy density uv as given by (4.2) does depend on cd .
Its dependence is such that uv + 1

2cd

∑
σ nσ e2

σ is invariant, so that (4.5) can be satisfied. The
specific amount by which the Hamiltonian is shifted when a different choice for cd is made
depends on the particle numbers Nσ , as (2.5) shows. Hence, the chemical potentials μ̃σ (with
σ �= 1) change as well when a different value for cd is chosen. However, the combination
μ̃σ + 1

2cdeσ (eσ − e1) is found to be invariant. Of course, the partial densities nσ do not depend
on cd .

It should be noted that both the pressure and the energy density can be written as a sum
of a kinetic and a potential part,

p = n

β
+ ppot, uv = dn

2β
+ upot

v . (4.6)

According to (4.5) the potential parts of the pressure and the energy density are related as
ppot = [(d − 2)/d]

(
u

pot
v + 1

2cd

∑
σ nσ e2

σ

)
. In appendix A, it is shown how several auxiliary

relations can be derived from (4.5).
For dimension d > 2 one may take cd = 0, so that (4.5) gets a simpler form [12]. In

contrast, for d → 2 one should choose cd according to (2.3). With that choice the energy
density uv stays finite for d → 2. Hence, it drops out from (4.5) in the limit. As a consequence,
we are left with the equation of state for the two-dimensional ionic mixture

p = n

β
− 1

8π

∑
σ

nσ e2
σ , (4.7)

which can also be obtained directly by applying a scaling argument to a system with a
logarithmic potential [29, 30]. The present derivation shows how the second term at the
right-hand side comes about as a consequence of the shift cd in the potential. Incidentally,

6
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we remark that it is essential to choose the right value for cd before taking the limit d → 2.
For instance, choosing cd = 0 in (4.5) and taking the limit naively, without realizing that uv

diverges in that case, would have resulted in an incorrect equation of state.
In closing this section, we remark that alternatively one may choose to describe the

equilibrium ionic mixture by means of a full grand-canonical ensemble with a background
with fixed density [2, 12, 21, 31, 32].

5. Thermodynamic sum rules for pair correlation functions: zeroth- and

second-moment rules

In the restricted grand-canonical ensemble the derivative of the partial density nσ1 with respect
to the chemical potential combination βμ̃σ2 is given by

Dnσ1

Dβμ̃σ2

= 1

V

〈
Nσ1Nσ2

〉 − 1

V

〈
Nσ1

〉〈
Nσ2

〉
, (5.1)

with the operator D/Dβμ̃σ defined as

D

Dβμ̃σ

= (1 − δσ1)
∂

∂βμ̃σ

− δσ1

∑
σ ′ �=1

eσ ′

e1

∂

∂βμ̃σ ′
. (5.2)

The right-hand side of (5.1) can be expressed as an integral over the pair correlation function.
As a result one finds

nσ1nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) = Dnσ1

Dβμ̃σ2

− nσ1δσ1σ2 . (5.3)

Upon summation over σ2, with the weights eσ2 , one recovers the perfect-screening rule (3.5).
Taking an unweighted sum over σ2 and using (A.8) to eliminate the derivative of the particle
density n we find the equality

1

2
d(d − 4)nσ1

∑
σ2

nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) = −(d − 2)β

∂nσ1

∂β
+ dqv

∂nσ1

∂qv

− 1

2
d(d − 2)nσ1 +

1

2
(d − 2)cdβ

D

Dβμ̃σ1

(∑
σ2

nσ2e
2
σ2

)
. (5.4)

This zeroth-moment sum rule is independent of the perfect-screening sum rule. Like that rule
it is valid for each species σ1 separately. If an unweighted sum over σ1 is carried out, one
arrives at a less strong sum rule of the form

1

2
d(d − 4)

∑
σ1,σ2

nσ1nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) = −(d − 2)β

∂n

∂β
+ dqv

∂n

∂qv

− 1

2
d(d − 2)n +

1

2
(d − 2)cdβ

∑
σ1

e2
σ1

Dn

Dβμ̃σ1

. (5.5)

For any d > 2 one may choose cd = 0 in (5.4) and (5.5). For d = 4 the integrals in (5.4) and
(5.5) drop out; the resulting equalities are trivial consequences of the relation (A.8). The case
d = 2 deserves special attention, and will be discussed at the end of this section.

The derivative of the partial density nσ with respect to the inverse temperature β reads

∂nσ

∂β
= − 1

V
〈NσH 〉 +

1

V
〈Nσ 〉〈H 〉. (5.6)

7
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Like the derivative with respect to the chemical potentials discussed above, it can be written
in terms of integrals over Ursell functions, as shown in appendix B,

(d − 2)β
∂nσ1

∂β
= −1

2
βqvnσ1

∑
σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12

− 1

2
d(d − 4)nσ1

∑
σ2

nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) − 1

2
d(d − 2)nσ1

+
1

2
(d − 2)cdβnσ1

[∑
σ2

nσ2e
2
σ2

∫
dr2 h(2)

σ1σ2
(r1, r2) + e2

σ1

]
. (5.7)

An essential role in the proof of this identity is played by the symmetry properties of the Ursell
functions, as is discussed in appendix C. Employing (5.3) and (5.4) for two of the integrals at
the right-hand side, we find that many terms cancel. In this way, we obtain the second-moment
sum rule

nσ1

∑
σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12 = −2d

β

∂nσ1

∂qv

. (5.8)

Summing over σ1 with the weights eσ1 one recovers the Stillinger–Lovett rule (3.12). Taking
the sum with equal weights we get the second-moment identity∑

σ1,σ2

nσ1nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12 = −2d

β

∂n

∂qv

, (5.9)

which is independent of the Stillinger–Lovett rule.
The above sum rules have been derived for all d > 2. To obtain the corresponding rules

for the case d = 2 we choose cd according to (2.3) and take the limit d → 2. The zeroth-order
sum rule (5.3) retains the same form, whereas the sum rules (5.4) and (5.5) become

nσ1

∑
σ2

nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) = −qv

∂nσ1

∂qv

+
β

8π

D

Dβμ̃σ1

(∑
σ2

nσ2e
2
σ2

)
(5.10)

and ∑
σ1,σ2

nσ1nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) = −qv

∂n

∂qv

+
β

8π

∑
σ1

e2
σ1

Dn

Dβμ̃σ1

. (5.11)

As in the previous section, incorrect results would have been obtained from (5.4) and (5.5)
when the choice cd = 0 had been made before evaluating the limit d → 2. In contrast, the
sum rules (5.8) and (5.9) are independent of the choice of cd , so that the proof of their validity
for d = 2 is straightforward. It may be noted that in deriving the limiting form of the auxiliary
relation (5.7) it is important once again to choose cd correctly before taking the limit.

The above derivation of (5.8) for general d shows how one can combine perfect screening,
symmetry and thermodynamics with the statistical relation (5.6) to establish a second-moment
sum rule. For the special case d = 2 the last-mentioned ingredient is not necessary, as is
shown in detail in appendix C. This particular feature of the second-moment sum rule (5.8)
for d = 2 has been discovered recently [6].

6. Thermodynamic sum rules for pair correlation functions: fourth-moment rule

To derive an equality for the fourth moment of the two-particle Ursell function we start from
an expression for its derivative with respect to the inverse temperature,

8
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(d − 2)β
∂

∂β

[
nσ1nσ2h

(2)
σ1σ2

(r1, r2)
] = −1

2
βqvnσ1nσ2

∑
σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r

2
23

− 1

2
d(d− 4)nσ1nσ2

∑
σ3

nσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)− nσ1nσ2 r12 · ∂

∂r1
h(2)

σ1σ2
(r1, r2)

− 1

2
βqvnσ1nσ2eσ1h

(2)
σ1σ2

(r1, r2)r
2
12 − d(d − 2)nσ1nσ2h

(2)
σ1σ2

(r1, r2)

+
1

2
(d − 2)cdβnσ1nσ2

[ ∑
σ3

nσ3e
2
σ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)

+
(
e2
σ1

+ e2
σ2

)
h(2)

σ1σ2
(r1, r2)

]
. (6.1)

The proof of this identity is sketched in appendix B. Multiplying both sides with eσ1eσ2φ(r12),
integrating over r2 and summing over σ1 and σ2, we get an expression for the derivative of the
potential-energy density (B.1),

2(d − 2)β
∂u

pot
v

∂β
= −1

2
βqv

∑
σ1,σ2,σ3

nσ1nσ2nσ3eσ1eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r

2
23φ(r12)

− 1

2
d(d − 4)

∑
σ1,σ2,σ3

nσ1nσ2nσ3eσ1eσ2

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)φ(r12)

−
∑
σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 r12 ·

[
∂

∂r1
h(2)

σ1σ2
(r1, r2)

]
φ(r12)

− 1

2
βqv

∑
σ1,σ2

nσ1nσ2e
2
σ1

eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12φ(r12) − 2d(d − 2)upot

v

+
1

2
(d− 2)cdβ

∑
σ1,σ2

nσ1nσ2eσ1eσ2

[∑
σ3

nσ3e
2
σ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)φ(r12)

+
(
e2
σ1

+ e2
σ2

) ∫
dr2 h(2)

σ1σ2
(r1, r2)φ(r12)

]
. (6.2)

The first term at the right-hand side can be expressed in moments of the two-particle Ursell
functions by using the relation (C.4), which follows from the symmetry properties of the
three-particle Ursell function. Likewise, the second and the sixth terms can be rewritten by
means of the symmetry relation (C.2). In the third term, we can carry out a partial integration
and use the identity

r12 · ∂φ(r12)

∂r1
= −(d − 2)φ(r12) + (d − 2)cd . (6.3)

As a result we arrive at a relation involving the zeroth, the second and the fourth moments of
the two-particle Ursell function,

dβ2q2
v

∑
σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

4
12

+ 2d(d − 6)(d + 2)βqv

∑
σ1,σ2

nσ1nσ2eσ1

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12

− 4d2(d − 4)(d + 2)
∑
σ1,σ2

nσ1nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)

9
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= −8(d − 2)2(d + 2)β2 ∂u
pot
v

∂β
− 16(d − 1)(d − 2)(d + 2)βupot

v

+ 2(d − 2)(d + 2)cdβ

[
2βqv

∑
σ1,σ2

nσ1nσ2e
2
σ1

eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12

+ d(d − 6)
∑
σ1,σ2

nσ1nσ2e
2
σ1

∫
dr2 h(2)

σ1σ2
(r1, r2) + (d2 − 6d + 4)

∑
σ1

nσ1e
2
σ1

]

− 2(d − 2)2(d + 2)c2
dβ

2

[∑
σ1,σ2

nσ1nσ2e
2
σ1

e2
σ2

∫
dr2 h(2)

σ1σ2
(r1, r2) +

∑
σ1

nσ1e
4
σ1

]
.

(6.4)

The zeroth and second moments at both sides of this relation can be replaced by the
thermodynamic expressions given in (5.3) and (5.8). The ensuing derivatives with respect to
the chemical potentials may be eliminated with the help of (A.8). Furthermore, at the right-
hand side the full energy density can be introduced with the help of (4.6). These manipulations
lead to an expression for the fourth moment of the Ursell function in terms of thermodynamic
derivatives only,

dβ2q2
v

∑
σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

4
12

= − 8(d − 2)2(d + 2)β2 ∂uv

∂β
− 16(d − 1)(d − 2)(d + 2)βuv

+ 4d(d − 2)(d − 4)(d + 2)β
∂n

∂β
+ 4d2(d − 4)(d + 2)qv

∂n

∂qv

− 4(d− 2)(d+ 2)cdβ

[
(d− 2)β

∂

∂β
+ dqv

∂

∂qv

+ d − 2

] (∑
σ

nσ e2
σ

)
. (6.5)

Upon using (A.9) we find that the right-hand side is proportional to the derivative of the
pressure p (in the form of (4.5)) with respect to qv . In this way, we have found the rather
elegant fourth-moment sum rule∑

σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

4
12 = −8d(d + 2)

βqv

∂p

∂qv

. (6.6)

It is a generalization to arbitrary s and d of the well-known compressibility rule that has been
established for the one-component plasma in two [24] and three [19, 33–35] dimensions and
for the three-dimensional ionic mixture [7, 21]. Whereas the second moments, as given by the
sum rules (3.12), (5.8) and (5.9), are linear in d, the fourth moment turns out to be quadratic
in d.

For all d > 2 we may put cd = 0, as before, so that the relations (6.1)–(6.5) become
somewhat simpler. To discuss the case d = 2 we must choose cd as in (2.3). Upon taking
the limit d → 2 the terms in (6.1)–(6.5) containing cd remain finite, so that they cannot be
omitted. However, the final result (6.6) does not depend on cd explicitly, so that it remains
valid as such in the limit d → 2. Hence, we have established the fourth-moment rule (6.6) for
all d � 2.

As a final remark we point out that a shorter proof of the fourth-moment rule for the
special case d = 2 can be found from a particular symmetry relation connecting second and
fourth moments, as discussed in appendix C. The derivative ∂h(2)

σ1σ2

/
∂β is not needed in that

line of reasoning.
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7. Concluding remarks

By making a systematic use of the properties of the restricted grand-canonical ensemble and
the hierarchy equations for the correlation functions we have been able to derive the sum rules
that govern the first few moments of the two-particle Ursell functions for a multi-component
ionic mixture with an arbitrary spatial dimension d � 2. The dependence on d of the various
moments has been determined in detail. While most discussions in the literature had to treat
two-dimensional mixtures with a logarithmic potential as a separate case, we have shown that
a unified description of mixtures for all d � 2 is indeed possible by making a careful choice
of additive constants in the potential.

Our main results for the moments of the two-particle Ursell function are presented in
(3.5), (3.12), (5.3)–(5.5), (5.8)–(5.9) and (6.6). The ensuing results for the moments of
the two-particle correlation function follow by replacing h(2)

σ1σ2
with g(2)

σ1σ2
− 1. Whereas the

zeroth-moment perfect-screening rules (3.5) and the second-moment rule (3.12) could be
derived without invoking thermodynamical properties, the proof of the other sum rules had
to be based on statistical ensemble theory. Accordingly, the ensuing rules in sections 5
and 6 depend on thermodynamical derivatives with respect to the basic variables describing
ionic mixtures in a restricted grand-canonical ensemble, namely β, {βμ̃σ } (for σ = 2, . . . , s)
and qv .

If one wishes, one may express the sum rules in terms of derivatives with respect to a
different set of independent variables involving—apart from β—the chemical potentials {μσ }
with σ = 1, . . . , s, in a way described previously [7]. For completeness we give the sum rules
(5.3), (5.8) and (6.6) in terms of derivatives with respect to these alternative variables,

nσ1nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) = 1

β

(
∂nσ1

∂μσ2

− 1

S

∂qv

∂μσ1

∂qv

∂μσ2

)
− nσ1δσ1σ2 (7.1)

nσ1

∑
σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12 = − 2d

βS

∂qv

∂μσ1

(7.2)

∑
σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

4
12 = −8d(d + 2)

βS
, (7.3)

with the abbreviation S = ∑
σ eσ ∂qv/∂μσ . As before, in writing the partial derivatives at the

right-hand sides the independent variables that are kept constant are suppressed.
The sum rules discussed in this paper are essential in understanding the equilibrium

fluctuations in an ionic mixture. In particular, the fluctuations in the partial densities, the
pressure and the energy density are governed by these rules, as has been shown in [36] for
the three-dimensional case. The fluctuation formulae in turn are necessary in order to determine
specific dynamical properties of the ionic mixture, such as the time evolution of the collective
modes [37, 38].
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Appendix A. Stability, thermodynamic pressure and some auxiliary relations

In this appendix, we shall first discuss the stability of ionic mixtures in arbitrary dimension.
Furthermore, we shall establish the relation between the thermodynamic pressure and the
partition function in the restricted grand-canonical ensemble. Finally, a few thermodynamic
auxiliary relations will be derived.

By generalizing the argument given in [17] so as to be applicable to a mixture in arbitrary
dimension d > 2 one finds the bound

U � − d

2π(d + 2)(d − 2)
q(d−2)/d

v

[
�

(
1

2
d + 1

)]2/d ∑
σ

Nσ e1+2/d
σ − 1

2
cd

∑
σ

Nσ e2
σ , (A.1)

which for the one-component case (and cd = 0) agrees with the bound presented by Sari
et al [39, 40]. Taking moreover d = 3 one recovers the result in [17]. For d → 2 and cd = 0
the bound in (A.1) goes to −∞, so that it becomes useless. However, upon choosing cd as in
(2.3) the inequality (A.1) becomes in the limit d → 2,

U � − 1

8π

∑
σ

Nσ e2
σ log

(
πqv

eσ

)
− 1

2

(
c +

3

8π

) ∑
σ

Nσ e2
σ . (A.2)

For the one-component case (and the choice c = 0) this inequality has been derived previously
[39]. It should be remarked that different bounds have been obtained in the past [41]–[44].
For our present discussion these are not relevant, since we only wish to confirm here that the
multi-component ionic mixture is stable for arbitrary d � 2.

Furthermore, we want to derive the relation (4.3) between the the pressure p and the
thermodynamic function p̃, which follows from the partition function according to (4.1).
Generalizing the definition of the (thermal) pressure in a one-component plasma by Choquard
et al [45] to an ionic mixture, we write it as the derivative of the free energy F with respect
to the volume V at constant temperature T, constant (average) particle numbers nσV (for
σ = 2, . . . , s) and constant total background charge qvV ,

p = −
(

∂F (T , {nσ }, qv, V )

∂V

)
T ,{nσ V },qvV

. (A.3)

Taking account of the implicit dependence on V we get

p = −fv +
∑

σ(�=1)

nσ

(
∂fv

∂nσ

)
T ,{nσ ′ },qv

+ qv

(
∂fv

∂qv

)
T ,{nσ }

, (A.4)

with fv(T , {nσ }, qv) = F/V the free energy density. The construction of the restricted
grand-canonical ensemble implies the relations [7]

dfv = −sv dT +
∑

σ(�=1)

μ̃σ dnσ + μ̃q dqv (A.5)

p̃ = −fv +
∑

σ(�=1)

μ̃σ nσ , (A.6)

with sv the entropy density and μ̃q = −∂p̃/∂qv . Hence, (A.4) can be written as

p = −fv +
∑

σ(�=1)

μ̃σ nσ + μ̃qqv. (A.7)

Comparison of (A.6) and (A.7) yields the relation between p̃ and the pressure p that we wished
to prove.
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Finally, in the main text we need several equalities involving partial derivatives of
thermodynamic quantities. Upon differentiating the relation (4.5) with respect to βμ̃σ , at
constant β and qv , we get

(d − 2)β
∂nσ

∂β
= dqv

∂nσ

∂qv

− dnσ − 1

2
d(d − 4)

Dn

Dβμ̃σ

+
1

2
(d − 2)cdβ

D

Dβμ̃σ

(∑
σ ′

nσ ′e2
σ ′

)
,

(A.8)

with the operator D/Dβμ̃σ defined in (5.2). Likewise, differentiation of (4.5) with respect to
β yields

(d − 2)β
∂uv

∂β
= dqv

∂uv

∂qv

− 2(d − 1)uv +
1

2
d(d − 4)

∂n

∂β

− 1

2
(d − 2)cd

(
1 + β

∂

∂β

)(∑
σ

nσ e2
σ

)
. (A.9)

For d > 2 we may choose cd = 0, so that the last terms at the right-hand sides of (A.8)
and (A.9) drop out. For d → 2 we choose cd as in (2.3). When the limit is taken, the left-hand
sides of (A.8) and (A.9) disappear, while the last terms at the right-hand sides yield a finite
contribution. As a result we get for d = 2,

qv

∂nσ

∂qv

− nσ +
D

Dβμ̃σ

(
n − β

8π

∑
σ ′

nσ ′e2
σ ′

)
= 0 (A.10)

and

qv

∂uv

∂qv

− uv − ∂n

∂β
+

1

8π

(
1 + β

∂

∂β

)(∑
σ

nσ e2
σ

)
= 0. (A.11)

The auxiliary relations (A.8) and (A.9) have been used in the main text.

Appendix B. Derivatives of densities and Ursell functions with respect to the inverse

temperature

In deriving the second- and fourth-moment sum rules we need expressions for the derivatives
of the partial densities and the two-particle Ursell functions with respect to β. The
derivative of nσ with respect to β follows by evaluating its formal expression: ∂nσ /∂β =
−〈Nσ H 〉/V + 〈Nσ 〉〈H 〉/V . The average 〈H 〉 of the Hamiltonian is proportional to the
internal energy uv , which is the sum of a kinetic and a potential part of the form (4.6). The
latter can be written as an integral over the two-particle Ursell function

upot
v = 1

2

∑
σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)φ(r12). (B.1)

The average 〈Nσ H 〉 can likewise be expressed in terms of integrals over Ursell functions. As
a result we find

β
∂nσ1

∂β
= −1

2
βnσ1

∑
σ2,σ3

nσ2nσ3eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)φ(r23)

−βnσ1eσ1

∑
σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)φ(r12)

− 1

2
dnσ1

∑
σ2

nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2) − 1

2
dnσ1 . (B.2)
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Employing the symmetry relation (C.2) to eliminate the integral with the three-particle Ursell
function, we arrive at (5.7).

Furthermore, we need an expression for the derivative of the two-particle Ursell
function with respect to β. In the restricted grand-canonical ensemble one has quite
generally ∂〈f 〉/∂β = −〈f H 〉 + 〈f 〉〈H 〉 for an arbitrary phase function f . Taking
f = ∑′

α1,α2
δ
(
r1 − rσ1α1

)
δ
(
r2 − rσ2α2

)
and using (2.5) one derives

β
∂

∂β

[
nσ1nσ2h

(2)
σ1σ2

(r1, r2)
] = −1

2
βnσ1nσ2

∑
σ3,σ4

nσ3nσ4eσ3eσ4

×
∫

dr3 dr4 h(4)
σ1σ2σ3σ4

(r1, r2, r3, r4)φ(r34)

− 1

2
dnσ1nσ2

∑
σ3

nσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)

−βnσ1nσ2

∑
σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)

[
eσ1φ(r13) + eσ2φ(r23)

]
− dnσ1nσ2h

(2)
σ1σ2

(r1, r2) − βnσ1nσ2eσ1eσ2h
(2)
σ1σ2

(r1, r2)φ(r12)

− 1

2
βnσ1nσ2

∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 dr4

[
h(2)

σ1σ3
(r1, r3)h

(2)
σ2σ4

(r2, r4)

+ h(2)
σ1σ4

(r1, r4)h
(2)
σ2σ3

(r2, r3)
]
φ(r34)

−βnσ1nσ2

∑
σ3

nσ3eσ3

∫
dr3

[
eσ1h

(2)
σ2σ3

(r2, r3)φ(r13) + eσ2h
(2)
σ1σ3

(r1, r3)φ(r23)
]

−βnσ1nσ2eσ1eσ2φ(r12). (B.3)

For large separation of the position arguments the left-hand side vanishes faster than any inverse
power of r12. At the right-hand side, the first three integrals and the two terms proportional to
h(2)

σ1σ2
share this feature. However, the property of being of short range is not obviously true for

the last two integral terms, while it is certainly false for the final term, which is proportional to
φ(r12) and hence of long range. Nevertheless, by employing (3.4) and (3.5) one may rewrite
the sum of these terms in a form that shows their short-range character as a function of r12

explicitly,

− β

d − 2
nσ1nσ2

∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 h(2)

σ1σ3
(r1, r3)r13 · ∂φ(r23)

∂r2

∫
r24>r23

dr4 h(2)
σ2σ4

(r2, r4)

+ βnσ1nσ2

∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 h(2)

σ2σ3
(r2, r3) [φ(r13) − cd ]

∫
r14>r13

dr4 h(2)
σ1σ4

(r1, r4)

+ βnσ1nσ2eσ2 [φ(r12) − cd ]
∑
σ3

nσ3eσ3

∫
r13>r12

dr3 h(2)
σ1σ3

(r1, r3). (B.4)

Substituting these terms and using moreover the symmetry relation (C.6) in the first term at
the right-hand side of (B.3), we arrive at the somewhat simpler expression (6.1) given in the
main text. It should be noted that at the right-hand side of (6.1) the potential does not occur
explicitly any more.
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Appendix C. Symmetry relations

The Ursell functions are symmetric under a permutation of both their position arguments ri

and their component labels σi . From that symmetry one proves

(d − 2)
∑
σ2,σ3

nσ2nσ3eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3) [φ(r23) − cd ]

= 2
∑
σ2,σ3

nσ2nσ3eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r12 · ∂φ(r23)

∂r2
. (C.1)

At the right-hand side we use (3.10). Employing moreover the perfect-screening relations
(3.5) and (3.6) we get the identity

(d − 2)β
∑
σ2,σ3

nσ2nσ3eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)φ(r23)

+ 2(d − 2)βeσ1

∑
σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)φ(r12)

= βqv

∑
σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12 − 2d

∑
σ2

nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)

− (d − 2)cdβ

[ ∑
σ2

nσ2e
2
σ2

∫
dr2 h(2)

σ1σ2
(r1, r2) + e2

σ1

]
, (C.2)

which is used in section 6 and appendix B.
A second identity is obtained by starting from an equality that is analogous to (C.1) and

follows likewise from the symmetry of the three-particle Ursell function

(d − 2)
∑
σ2,σ3

nσ2nσ3eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3) [φ(r23) − cd ]

× [
r2

12 + r12 · r23 + 2r−2
23 (r12 · r23)

2]
= 2

∑
σ2,σ3

nσ2nσ3eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r

2
12r12 · ∂φ(r23)

∂r2
. (C.3)

The right-hand side can be expressed in terms of two-particle Ursell functions by employing
the hierarchy equation (3.2). At the left-hand side we may invoke the perfect-screening rule
(3.7) for � = 1, 2, when the sum over σ1 with weights nσ1eσ1 is carried out as well. In this
way, we arrive at the identity

(d − 2)β
∑

σ1,σ2,σ3

nσ1nσ2nσ3eσ1eσ2eσ3

∫
dr2 dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r

2
23φ(r12)

+ (d − 2)β
∑
σ1,σ2

nσ1nσ2e
2
σ1

eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12φ(r12)

= d

2(d + 2)
βqv

∑
σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

4
12

− 2d
∑
σ1,σ2

nσ1nσ2eσ1

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12

− (d − 2)cdβ
∑
σ1,σ2

nσ1nσ2e
2
σ1

eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12 (C.4)

which is needed in section 6 of the main text.
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Finally, we want to establish an equality for the four-particle Ursell function. It follows
by starting from an equality for h(4) of a similar form as (C.1),

(d − 2)
∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 dr4 h(4)

σ1σ2σ3σ4
(r1, r2, r3, r4) [φ(r34) − cd ]

= 2
∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 dr4 h(4)

σ1σ2σ3σ4
(r1, r2, r3, r4)r13 · ∂φ(r34)

∂r3
. (C.5)

Upon using the hierarchy equation (3.1) for k = 3, the expansion (3.3), the identity (3.4) and
the perfect-screening rules (3.5)–(3.6) we get, by taking steps analogous to those of appendix
B of [7],

1

2
(d − 2)β

∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 dr4 h(4)

σ1σ2σ3σ4
(r1, r2, r3, r4)φ(r34)

= −(d − 2)β
∑
σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)

[
eσ1φ(r13) + eσ2φ(r23)

]

+
1

2
βqv

∑
σ3

nσ3eσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3)r

2
23

− d
∑
σ3

nσ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3) + r12 · ∂

∂r1
h(2)

σ1σ2
(r1, r2)

−β
∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 h(2)

σ1σ3
(r1, r3)r13 · ∂φ(r23)

∂r2

∫
r24>r23

dr4 h(2)
σ2σ4

(r2, r4)

+ (d − 2)β
∑
σ3,σ4

nσ3nσ4eσ3eσ4

∫
dr3 h(2)

σ2σ3
(r2, r3) [φ(r13) − cd ]

×
∫

r14>r13

dr4 h(2)
σ1σ4

(r1, r4) + (d − 2)βeσ2 [φ(r12) − cd ]

×
∑
σ3

nσ3eσ3

∫
r13>r12

dr3 h(2)
σ1σ3

(r1, r3) − (d − 2)βeσ1eσ2h
(2)
σ1σ2

(r1, r2)φ(r12)

+
1

2
βqveσ1h

(2)
σ1σ2

(r1, r2)r
2
12 − 1

2
(d − 2)cdβ

×
[ ∑

σ3

nσ3e
2
σ3

∫
dr3 h(3)

σ1σ2σ3
(r1, r2, r3) +

(
e2
σ1

+ e2
σ2

)
h(2)

σ1σ2
(r1, r2)

]
. (C.6)

This rather complicated identity has been used in appendix B. Inspection of the terms at the
right-hand side shows that for large r12 each of these vanishes faster than any inverse power
of r12, as it should be in view of the short-range character of the four-point Ursell function at
the left-hand side.

For d > 2 the above identities may be simplified by putting cd equal to 0. That choice
is not allowed when one is interested in the limit d → 2. In that case one takes cd according
to (2.3). In the limit d → 2 the left-hand side of the identity (C.2) vanishes, so that
we get an identity that connects the zeroth and second moments of the two-particle Ursell
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function,

βqv

∑
σ2

nσ2eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12 = 4

∑
σ2

nσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)

− β

2π

[ ∑
σ2

nσ2e
2
σ2

∫
dr2 h(2)

σ1σ2
(r1, r2) + e2

σ1

]
. (C.7)

It should be noted that the last two terms would have been missed when in (C.2) the limit
d → 2 had been taken naively after putting cd = 0. The identity (C.7), which is valid for
the special case d = 2 only, has been obtained recently [6]. Upon substituting (5.3) into the
right-hand side and using (A.10) we recover (5.8) for d = 2. In fact, this shows that for
d = 2 the second-moment sum rule (5.8) can be derived from perfect screening, symmetry
and thermodynamics alone, without having recourse to the rather complicated expression for
the derivative ∂nσ /∂β of the partial density with respect to the inverse temperature. The latter
expression is essential in deriving the second-moment sum rule for arbitrary d > 2.

Similarly, for d → 2 the symmetry relation (C.4) reduces to an identity connecting the
second and fourth moments of the two-particle Ursell function,

βqv

∑
σ1,σ2

nσ1nσ2eσ1eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

4
12 = 16

∑
σ1,σ2

nσ1nσ2eσ1

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12

− 2β

π

∑
σ1,σ2

nσ1nσ2e
2
σ1

eσ2

∫
dr2 h(2)

σ1σ2
(r1, r2)r

2
12. (C.8)

The last term is missed when one puts cd = 0 in (C.4) before taking the limit d → 2.
Substituting (5.8) and using the equation of state (4.7) we are led to (6.6) for d = 2. Hence,
in a similar way as discussed above for the second-moment sum rule, the derivation of the
fourth-moment sum rule can be simplified for the special case d = 2. For that case it is
enough to make use of the perfect-screening and second-moment rules, symmetry properties
and thermodynamical relations in the proof, whereas for general d the derivative ∂h(2)

σ1σ2
/∂β of

the two-particle Ursell function with respect to the inverse temperature needs to be determined.
Incidentally, we remark that for the one-component case the identity (C.8) has been obtained
before [24].

We are left with (C.6) in the limit d → 2. The resulting identity is rather complicated
and is not needed in the main text, so that we refrain from writing it down.
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